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Abstract. Biodiversity informatics (BDI) information is both highly
localized and highly distributed. The temporal and spatial contexts of
data collection events are generally of primary importance in BDI stud-
ies, and most studies are focused around specific localities. At the same
time, data are collected by many groups working independently, but of-
ten at the same sites, leading to a distribution of data. BDI data are
also distributed over time, due to protracted longitudinal studies, and
the continuously evolving meanings of taxonomic names. Ambient data
integration provides new opportunities for collecting, sharing, and ana-
lyzing BDI data, and the nature of BDI data poses interesting challenges
for applications of ADI. This paper surveys recent work on utilization of
BDI data in the context of ADI. Topics covered include applying ADI to
species identification, data security, annotation and provenance sharing,
and coping with multiple competing classification ontologies. We con-
clude with a summary of requirements for applying ADI to biodiversity
informatics.

1 Introduction

Biodiversity informatics (BDI) applies information technology to the acquisi-
tion, storage, access, distribution, and analysis of data concerning organisms,
populations, and biological taxa and interactions between them. BDI research
is carried out in many places, from using sound to identify species in remote
biological field stations [1], to identifying trees in urban environments [2], to
completing all taxa biological inventories (ATBIs) in national forests [3].

Biodiversity studies increasingly rely on sensor networks and other small
devices for data collection and dissemination [4]. The strong spatial and temporal
components of the data lend themselves naturally to the application of pervasive
computing techniques. This paper discusses elements of biodiversity informatics
that can benefit from pervasive computing, shows ways in which the BDI context
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can inform research in pervasive computing, and discusses challenges in data
integration that arise for pervasive computing in the BDI context.

Spatial and temporal contextualization. Biodiversity data are highly sensi-
tive to spatial and temporal context. All aspects of data integration in biodiver-
sity informatics are affected by this. When identifying specimens, the location
and time of a study strongly constrain the types of biological taxa that may
be found and their appearance. As discussed in Section 4, location and time
may impact the integration of metadata about taxa. In addition, the geographic
location of studies or species must often be protected, affecting how data are
shared.

Challenging environments. Much biodiversity research by necessity takes
place far from an internet connection and power sources. This places constraints
on how much data are brought into the field and how data are taken from the
field. In addition, it constrains the types of analyses that may be done on site,
which impacts how data collection occurs. These constraints argue for a division
of labor among devices, which in turn drives the need for integrating the data
that the disparate devices collect.

Biodiversity studies also occur in environments that attenuate communica-
tion signals. For example, signals from GPS satellites are notoriously unreliable
in rain forests and often too coarse in urban environments. In addition, certain
environments preclude the use of specific frequencies for communication. All of
these limitations point to the necessity for creative means of sharing data from
sensors and other ambient-enabled devices.

Dynamic teams. Teams engaging in biodiversity studies frequently comprise
individuals from different countries, institutions and levels of expertise. In Na-
tional Geographic Bioblitzes,1 e.g., thousands of volunteers and scientists gather
for two days to complete an inventory. ATBIs of a region often span years and
many groups of researchers. In all these cases, different individuals have different
levels of knowledge and may bring different resources to the field. This kind of
team-based data collection falls into the category of participatory sensing [5]
where immediate data analysis and integration can drive additional collection
behavior. In order to leverage the information stored on individual devices, data
integration techniques must be applied to normalize differences in metadata. In
addition, the contemporaneous existence of disparate user devices and on-site
sensors requires sophisticated network security protocols. As described in Sec-
tion 3, specific trust issues arise in biodiversity studies that may be less prevalent
in other contexts. Finally, data sharing among independent teams requires a fo-
cus on the active management of data provenance and data ownership.

Data Complexity. Biodiversity data have some unusual properties that set
them apart from many other types of data. Perhaps the most significant such
property is the complexity of naming the fundamental entities of study: obser-

1 http://www.nationalgeographic.com/field/projects/bioblitz.html



vations, specimens, species, and other taxa. The primary system currently used
for naming biological taxa has evolved from a standard described by Linnaeus
in the middle of the 18th century. Over the subsequent 250 years, as information
about biological taxa has accumulated, the names for species and the taxonomies
relating them to each other have steadily changed. This change means that a
species name used today may mean something different than it meant 5 years
ago. One way to mitigate the problems caused by taxonomy evolution is to be
clear about which version of the taxonomic name is meant when it is applied.
In biology this is called the taxon’s “name authority,” and current BDI data
exchange standards (e.g., the Darwin Core2) all support (or insist on) inclusion
of a name authority. However, as we discuss in Section 4, specifying the name
authority is only a first step in supporting data integration.

Another challenge presented by biodiversity data is the amount and loca-
tion of information that may be relevant to scientists while they perform their
research in the field. Biodiversity data are highly distributed. For example, the
Global Biodiversity Information Facility (GBIF)3 indexes over 174 million spec-
imen and other georeferenced species-occurrence records from over 7000 data
sets at 285 different data providers. The fastest growing type of such data com-
prises field observations, often by experienced lay observers (“citizen scientists”
and parataxonomists). For example, the Avian Knowledge Network(AKN) e-
Bird project4 provides nearly 23M bird occurrence observations of which 18M
have geocoordinates, and AKN collects as many as 70 thousand North American
checklists annually. By expanding its definition of what is a biodiversity datum
(e.g., to include biodiversity multimedia metadata), GBIF has an ambitious plan
to operate indexing and caching services for access to a billion biodiversity data
items in a fully distributed fashion. The distribution and amount of biodiversity
data that may be useful for data collection in the field, where connectivity may
be limited, requires creative data management techniques.

Road Map. The remainder of the paper discusses specific aspects of biodiversity
studies, and shows how pervasive computing techniques can be used to better
collect and manage the data at these stages, as well as how the BDI context
impacts the requirements of data integration in a pervasive computing context.
Section 2 focuses on the need for ADI in data collection. Section 3 describes spe-
cific trust and provenance issues that must be addressed when integrating BDI
data. Section 4 focuses on the metadata involved in integrating BDI information
and shows how the context sensitivity of BDI data impacts critical aspects of
ADI. We conclude in Section 5 by describing several requirements for integrating
BDI data in a pervasive computing context.

2 http://www.tdwg.org/activities/darwincore/
3 http://www.gbif.org/
4 http://www.ebird.org/



2 Identification and Data Collection

Novel field sensors and sensor systems have enabled unique access to information
about the environment, bringing useful data to and from the field while greatly
expanding the spatial and temporal resolution of data collection [4]. Comple-
mentary to this are advances in hand-held mobile devices, which support su-
pervised sensing through human interaction in the data collection process and
novel interfaces to vast stores of biodiversity information for real-time analysis
and synthesis. These field sensor systems and mobile devices improve existing
field research practices and create opportunities for new practices, such as par-
ticipatory sensing [5] and citizen science [6].

For example, a collaboration amongst Columbia University, University of
Maryland, and the Smithsonian Institution has developed a series of mobile
electronic field guides that aid in the identification of botanical species, pro-
vide access to digitized species information, and support specimen collection in
the field [7, 2]. Successive iterations of the prototype system, LeafView, run on
Tablet PC, Ultra Mobile PC (UMPC) and mobile phone platforms. The system
works by first taking a photograph of a leaf specimen. The photo is then ana-
lyzed using a custom computer vision algorithm to extract leaf shape [8]. Based
on the shape of the photographed leaf, the system provides a visualization of
the best matching species so the botanist can make a final visual identifica-
tion. Contextual information including geolocation, collector, time, and date are
saved along with the sample image and associated identification and all of this
data is aggregated over the course of a collection. Access to the entire digitized
image collection of the Smithsonian Herbarium supports detailed comparison
of new samples with existing voucher specimens. The system has been used by
Smithsonian botanists on Plummers Island, MD, and at the 2007 Rock Creek
Park National Geographic Bioblitz in Washington, D.C. Use of the system has
uncovered a variety of challenges related to ambient data integration.

2.1 Management and Integration of Identification Data

Expanding data sets are used both for automated identification and assisted
matching. In the current LeafView system, data sets for a region are loaded
prior to entering the field. While this works on a small scale, for larger scales
and multiple taxa, larger data sets need to be moved in and out of the system,
retrieved and cached, based on specific regions and tasks. For example, current
data sets for identification include:

– Flora of Plummers Island. 5,013 leaves of 157 species. Provides complete
coverage of all vascular plant species of Plummers Island, MD, an island in
the Potomac River near Washington, DC, which has long been studied by
botanists.

– Woody Plants of Baltimore-Washington, DC. 7,481 leaves of 245 species.
Provides complete coverage of all native woody plants (trees and shrubs) of
the Baltimore-Washington, DC area.



– Trees of Central Park. 4,320 leaves of 144 species.

The computed feature distances necessary for automated identification are
represented in an NxN matrix where N is the number of individual leaves in the
data set. For the Woody Plants of Baltimore-Washington, D.C., this requires 400
MB of storage. Even with improvements to the algorithm, the feature sets for
matching data promise to be large and grow with the number of species, requir-
ing compartmentalization and filtering. In addition to these data sets, access to
digitized images is necessary to visually match sample specimens with voucher
specimens. The US National Herbarium Type Specimen Collection alone incor-
porates over 90,000 images, covering more than one quarter of all known plant
species. Each specimen has been digitally photographed under controlled lighting
to produce an 18 megapixel image. A decimated version of the voucher specimens
for Woody Plants of Baltimore-Washington, DC (300K GIF images instead of
18 MB TIFF) requires 295 MB but a full resolution version of the data set would
provide more detail and would require much more space. These data manage-
ment issues are compounded when the data for an individual species is extended
to alternative representations. For example, recent research in augmented reality
uses situated visualization to superimpose relevant species information directly
onto the physical scene [9].

In the presence of a robust network, processing and data necessary for iden-
tification and matching can reside on server systems. However, remote areas
without connectivity require prediction about necessary data sets for identifica-
tion so analysis and data sets can be moved to the device. Task and location
context can help filter the search space and thus the data requirements. How-
ever, filtering and inaccuracies in matching can complicate use of the system.
When a new specimen is not found through automated identification or keys,
is it because the data is simply not in the current data set, is the identification
tool failing, or is this a new species?
2.2 Collaborative Identification and Shared Collections

With similar issues to data management, collaborative identification requires
sharing of collected specimen data and annotations in real-time. ADI issues
arise in several situations. First, in the case of censuses, a shared collection
list may be used. Synchronization of the collection list across multiple teams of
collectors helps focus resources on finding species that have yet to be collected.
Second, multiple sensing devices may be aggregated under a single processing
unit. For example, in one collection, several cameras were connected to a single
LeafView system, each able to send photographs for identification across a local
ad-hoc wireless network. Third, the collected data itself may be shared to aid
in identification. For example, collector A may be able to identify a particular
species and share their history of collection with other team members. If the
same species is observed by collector B, they can use the shared history of the
collection to help identify the species. Finally, the data needs to be shared and
used beyond any given field activity. In the current, non-networked device, data
is simply exported at the end of a field study. In a networked version, collections
should be opportunistically pushed to a proxy, mediator, or server.



2.3 Observation Driven Data Collection

Data collection, mediated through human agency, can also be driven by imme-
diate observations in the field. For example, reviewing a map of the locations of
collected specimens in a given geographic region may reveal areas that have not
yet been inspected. By creating shared models of data that reflect spatial and
temporal histories of observations, individuals and groups iteratively navigate
locations for collection of species. Such iteration requires real time data curation
incorporating explicit and implicit association of metadata.

3 Data Sharing

There are benefits to sharing data between sensors and other ambient-enabled
devices throughout the data collection process. Before data are collected, devices
must have access to information that will assist in the identification of species.
As the data are collected, the devices can inform each other about what has been
collected so far. In addition, sensors and other data sources at the study location
can supply data to inform and drive collection events. While BDI shares many
features with other participatory sensing scenarios, there are a few differentiating
aspects. Two of these are particular details about what data may be shared with
whom, and how an ambient data integrating system should deal with evolving
information about the objects being studied.

3.1 Access Control Issues

Security and access control are common problems in pervasive computing sce-
narios [10, 11]. BDI has some additional security requirements. The most widely
mentioned of these is the protection of sensitive geographic information, for ex-
ample to defend the exact location of organisms of rare or endangered species, or
to protect landowners who have given permission to use their land for biodiver-
sity surveys but do not want uninvited guests wandering around their property
looking for rare organisms. Unfortunately, professional practices can complicate
attempts to protect such data. For example, rigorous collection or observation
protocols require that collection and observation events have unique identifiers.
A standard practice is to assign sequential integers as part of an otherwise con-
stant event identifier. This causes problems for database systems that try to
suppress geographical information for sensitive specimens. For example, imag-
ine three records, r1, r2, r3 collected in the same location, the second of which
is considered sensitive. A “smart” database system that suppresses information
about r2 but returns the coordinates for r1 and r3 would give away r2s lo-
cation. A number of strategies are in use for protecting the geocoordinates of
occurrences of endangered species while still making full resolution available to
authorized users for such things as predictive range modeling. Among them are
one or another form of generalizing the geocoordinates, wherein the location is
given either at a low geo-resolution (e.g., to a 10 km square on a fixed grid) or
a named geopolitical entity, such as a town, county, or province.



One controversial reason sometimes given for biodiversity access control is
that some class of users may make use of the data in a way that is inappropri-
ate in the eyes of the data holder. See Chapman and Grafton [12] for a more
extensive review. Morris et al. [13] provided a fully distributed XACML-based
access control system whose control policies can be defined or enforced by the
original data provider or a host to which they delegate those services, and which
meets many of the needs expressed by networks of distributed taxon occurrence
data. Any of the access control services can be centralized and slowly migrated
to network nodes as and when their operators acquire sufficient IT skills and
resources to support such services. The filters are defined by XPath expressions
on the data interchange schema expressed in XML-Schema.

BDI access control per se does not give rise to different issues for ADI than
for computing regimes that are not context aware. It is, however, an instance of
challenges that arise in attempting to reason in dynamic contextual computing
environments, whether that reasoning is statistical or logical; namely it may am-
plify imperfect context information. Henrickson and Indulska identify four types
of imperfect context information: unknown, ambiguous, imprecise, and erroneous
[14]. The first three of these correspond to examples of georeference access control
mentioned above. The fourth, in the form of deception, is sometimes proposed
for access control, but is notoriously subject to data mining techniques designed
to find logical outliers. For example, a report of an arboreal animal swimming
100 km. off the coast of Portugal should usually be hypothesized to be erroneous.

3.2 Distributed Annotations for Quality Control

As in any scientific endeavor, the quality of the data acquired, stored and shared
is of paramount importance. In general, data quality can be measured by com-
parison with similar data already collected. For example, Calder et al. describe
a rule-based reasoning system targeted at sensor network data, that allows sci-
entists to put forth hypotheses about possible explanations of their observa-
tions and have a reasoning engine select which of them are consistent with the
currently accepted value of observation data [15]. Unfortunately, a substantial
amount of primary biodiversity data that might drive reasoning about field or
laboratory observations remains undigitized or is only partly digitized (e.g., to
the level of scanned images with no OCR). There are estimates that the world’s
natural history museums hold 3 billion specimens, of which fewer than 200 mil-
lion have any kind of digital record. The Biological Heritage Library5 has scanned
over 14 million pages of legacy taxonomic literature, much of which provides
original taxonomic descriptions of newly discovered species over the last three
centuries. Museum (and individual collector) specimen records and original lit-
erature represent part of the “ground truth” of species identification, but even
after imaging, many of these documents are being incrementally made digitally
useful by databasing, by rough machine-learning based automated markup, or
by semi-automatic markup guided by humans6. Most of these strategies result
5 http://www.biodiversitylibrary.org/
6 e.g., http://plazi.org/



in an ever moving target of increasingly accurate and increasingly fine-grained
knowledge content. This presents challenges and opportunities for individual or
coupled ambient computing platforms to reason over the data and knowledge to
which they have access for the purpose of assessing the quality of data they may
hold, and the quality of data they may report. This post hoc analysis and digi-
tization of historical biodiversity data adds special requirements to any system
that attempts to collect, record and share new biodiversity data. First, provi-
sion should be made for data records to be annotated with record-level quality
control metadata (or other annotations of interest). Second it must be possible
for the annotations to circulate in communities of interest, along with notifica-
tion mechanisms that attempt to provide the annotations and commentary upon
them to human or software agents that express an interest. A team at Harvard
and UMASS-Boston has designed and is implementing a “P2P Filtered Push
(FP) Annotation Exchange” for such a purpose [16]. Its currently implemented
prototype is dedicated to data of a special case, namely the digital form of accu-
mulated annotations on related botanical specimens. (Conventionally, botanists
collect multiple specimens from the same organism and circulate copies to mul-
tiple institutions for, usually, independent curation.) FP is built on the Apache
Hadoop Map-Reduce framework together with the Apache ActiveMQ Java Mes-
saging Service. FP is being extended to allow arbitrary workflows anywhere in
the local community or the Cloud to generate and announce QC (or other)
annotations.

4 Ontology-based Data Integration

The importance of ontologies in pervasive computing is widely recognized [17].
When investigators from disparate organizations, nations, and levels of expertise
collaborate in a BDI study, chances are they will bring with them a multitude
of heterogeneous metadata standards. As we have seen, data collection and data
sharing can be influenced by events that occur during and after a data collect-
ing event. Before ambient-enabled devices can integrate their data, they must
mitigate the differences in their metadata.

In BDI, metadata differences can appear in the standards used to describe
measurements [18], as well as to describe the things being measured. One partic-
ularly salient metadata issue in BDI revolves around the difficulties in naming
biological entities. As mentioned in the introduction, multiple taxonomies may
be used to classify a given set of biological taxa. Two groups using different field
guides may use different names to identify the same specimen. To minimize the
difficulties this inevitably creates when trying to integrate biodiversity data, ex-
perts create mappings between well-known taxonomies [19, 20]. These mappings
can be reasoned over to discover inconsistencies and new mappings [21], and may
be used to integrate data [22]. A great deal of uncertainty may occur when in-
tegrating data sets under multiple taxonomies. Often, this uncertainty can best
be resolved at the time of data collection. A challenge for ambient data inte-
gration is to integrate data collected by heterogeneous devices rapidly enough
to discover when the results of the integration are uncertain, and to notify the



data collectors while they are still in the field so that the uncertainties can be
resolved.

An interesting extension of the work on mapping biological taxonomies that
has not been addressed is the context specificity of the mappings. For example, in
one spatial context, such as North America, two taxonomic names A (mentioned
in one taxonomy) and B (mentioned in a different taxonomy) may refer to iden-
tical biological entities, while in another spatial context, such as South America,
one of the taxonomic names may refer to a subset of the second taxonomic name.
This might arise if specimens of taxon B that are not also in taxon A have been
identified in South America, but in North America all specimens of taxon B are
also specimens of taxon A. The discovery of a specimen of B that is not also a
specimen of taxon A in North America would be especially interesting, either
because it is new (possibly publishable) information about the taxa involved,
or because it is a misidentification. The interestingness of the identification of a
B that is not an A arises from the taxonomic mapping, which itself may only
come into play when ambient-enabled devices are expected to integrate their
data in the field. This again points to a challenge for ambient data integration:
it needs to be sensitive to the context (e.g., geographic context) under which the
integration occurs.

5 Conclusion

Biodiversity informatics presents several interesting challenges for data integra-
tion in ambient computing. First, connectivity in the field is reduced, creating
an emphasis on device provisioning of data and clever means for sharing data
between devices. Second, the data themselves are complex. Although most ADI
applications need to perform some semantic mediation for mismatched metadata,
the 250 year history of evolving taxon names presents a particularly extreme sit-
uation. Third, data integration occurring in real time can have immediate impact
on collecting events. This, along with the attenuated connectivity, argues for in-
telligent ambient-enabled devices that can analyze data as they are collected and
distribute information from these analyses. Finally, all aspects of a biodiversity
informatics study are affected by the spatial and temporal context of the study.
This includes the identification of species, the protection of sensitive data, and
the application of semantic metadata mediation. In the future, as sensors and
devices brought into the field are increasingly capable (e.g., identification via
on site DNA sequencing), this sensitivity to context will continue to influence
analyses and data dissemination.
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